Nebula
A nebula ('cloud' or 'fog' in Latin;<1> pl. nebulae, nebulæ or nebulas<2><3><4><5>) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter, and eventually will become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects.
Most nebulae are of vast size; some are hundreds of light-years in diameter. A nebula that is visible to the human eye from Earth would appear larger, but no brighter, from close by.<6> The Orion Nebula, the brightest nebula in the sky and occupying an area twice the angular diameter of the full Moon, can be viewed with the naked eye but was missed by early astronomers.<7> Although denser than the space surrounding them, most nebulae are far less dense than any vacuum created on Earth – a nebular cloud the size of the Earth would have a total mass of only a few kilograms. Earth's air has a density of approximately 1019 molecules per cubic centimeter; by contrast the densest nebulae can have densities of 10,000 molecules per cubic centimeter. Many nebulae are visible due to fluorescence caused by embedded hot stars, while others are so diffused that they can be detected only with long exposures and special filters. Some nebulae are variably illuminated by T Tauri variable stars.
Originally, the term "nebula" was used to describe any diffused astronomical object, including galaxies beyond the Milky Way. The Andromeda Galaxy, for instance, was once referred to as the Andromeda Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin Hubble and others. Edwin Hubble discovered that most nebulae are associated with stars and illuminated by starlight. He also helped categorize nebulae based on the type of light spectra they produced.<8>
Observational history<edit>
Around 150 AD, Ptolemy recorded, in books VII–VIII of his Almagest, five stars that appeared nebulous. He also noted a region of nebulosity between the constellations Ursa Major and Leo that was not associated with any star.<9> The first true nebula, as distinct from a star cluster, was mentioned by the Muslim Persian astronomer Abd al-Rahman al-Sufi, in his Book of Fixed Stars (964).<10> He noted "a little cloud" where the Andromeda Galaxy is located.<11> He also cataloged the Omicron Velorum star cluster as a "nebulous star" and other nebulous objects, such as Brocchi's Cluster.<10> The supernova that created the Crab Nebula, the SN 1054, was observed by Arabic and Chinese astronomers in 1054.<12><13>
In 1610, Nicolas-Claude Fabri de Peiresc discovered the Orion Nebula using a telescope. This nebula was also observed by Johann Baptist Cysat in 1618. However, the first detailed study of the Orion Nebula was not performed until 1659, by Christiaan Huygens, who also believed he was the first person to discover this nebulosity. <11>
In 1715, Edmond Halley published a list of six nebulae. <14> This number steadily increased during the century, with Jean-Philippe de Cheseaux compiling a list of 20 (including eight not previously known) in 1746. From 1751 to 1753, Nicolas-Louis de Lacaille cataloged 42 nebulae from the Cape of Good Hope, most of which were previously unknown. Charles Messier then compiled a catalog of 103 "nebulae" (now called Messier objects, which included what are now known to be galaxies) by 1781; his interest was detecting comets, and these were objects that might be mistaken for them.<15>
The number of nebulae was then greatly increased by the efforts of William Herschel and his sister Caroline Herschel. Their Catalogue of One Thousand New Nebulae and Clusters of Stars<16> was published in 1786. A second catalog of a thousand was published in 1789 and the third and final catalog of 510 appeared in 1802. During much of their work, William Herschel believed that these nebulae were merely unresolved clusters of stars. In 1790, however, he discovered a star surrounded by nebulosity and concluded that this was a true nebulosity, rather than a more distant cluster.<15>
Beginning in 1864, William Huggins examined the spectra of about 70 nebulae. He found that roughly a third of them had the emission spectrum of a gas. The rest showed a continuous spectrum and thus were thought to consist of a mass of stars.<17><18> A third category was added in 1912 when Vesto Slipher showed that the spectrum of the nebula that surrounded the star Merope matched the spectra of the Pleiades open cluster. Thus the nebula radiates by reflected star light.<19>
About 1923, following the Great Debate, it had become clear that many "nebulae" were in fact galaxies far from the Milky Way.
Slipher and Edwin Hubble continued to collect the spectra from many different nebulae, finding 29 that showed emission spectra and 33 that had the continuous spectra of star light.<18> In 1922, Hubble announced that nearly all nebulae are associated with stars, and their illumination comes from star light. He also discovered that the emission spectrum nebulae are nearly always associated with stars having spectral classifications of B or hotter (including all O-type main sequence stars), while nebulae with continuous spectra appear with cooler stars.<20> Both Hubble and Henry Norris Russell concluded that the nebulae surrounding the hotter stars are transformed in some manner.<18>